Structure Cristalline du Complexe Moléculaire 1:1 Trinitrobenzène-Acétyl-1 Scatole

PAR EVELYNE SURCOUF ET JEAN DELETTRÉ

Laboratoire de Minéralogie–Cristallographie associé au CNRS, Université Pierre et Marie Curie, Tour 16, 4 place Jussieu, 75230 Paris CEDEX 05, France

(Reçu le 15 décembre 1977, accepté le 18 janvier 1978)

The crystal and molecular structure of the title complex has been determined by single-crystal X-ray diffraction analysis. The crystals belong to the monoclinic space group $P2_1$, with a = 15.498 (3), b = 7.978 (2), c = 7.172 (2) Å, $\beta = 96.64$ (5)° and Z = 2. The structure was solved by direct methods; the parameters were refined by full-matrix least squares, using 1520 observed reflexions. H atoms were included in the calculations. The refinement converged at R = 0.053 and $R_w = 0.052$. The complex molecules are stacked alternately in infinite columns parallel to the c axis. The two molecules show a planar conformation. The different bond lengths and angles are in good agreement with the expected values.

Introduction

Dans le cadre de l'étude de la conformation moléculaire de l'acétyl-1 scatole (Surcouf, Mornon & Malgrange, 1978) nous avons déterminé la structure du complexe 1:1 trinitrobenzène symétrique (TNB)-acétyl-1 scatole.

Des complexes du même type ont déjà été étudiés par différents auteurs; en voici quelques exemples: TNB-indole et TNB-scatole (Hanson, 1964), TNBazulène (Hanson, 1965), TNB-anthracène (Brown, Wallwork & Wilson, 1964), TNB-s-triaminobenzène (Iwasaki & Saito, 1970), TNB-formyl-3 benzothiophène (Pascard & Pascard-Billy, 1972).

Les mesures d'intensité ont été effectuées sur un diffractomètre automatique Philips PW 1100, en utilisant la radiation Cu $K\alpha$. Seules les intensités des réflexions ont été mesurées, le fond continu résultant d'une série unique de mesures effectuées en fonction de l'angle θ .

Résolution de la structure

La structure de ce complexe a été déterminée sans difficulté à l'aide du programme MULTAN. L'affinement des paramètres atomiques s'est effectué normalement. Les atomes d'hydrogène ont été introduits dans le calcul et affinés; trois d'entre eux ont été ajoutés théoriquement et fixés.

La valeur finale du coefficient R est de 0,053.* Les paramètres atomiques sont rassemblés dans le Tableau 1.

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 33363: 9 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Molécule d'acétyl-1 scatole. (a) Longueurs de liaisons (Å), $\sigma \simeq 0,005$ Å, (b) angles de valence (°), $\sigma \simeq 0,4^{\circ}$.

D

Tableau 1. Paramètres atomiques (×10⁴) avec déviations standard

Les atomes d'hydrogène marqués avec un astérisque ont été ajoutés théoriquement.

				Deq
				ou
	x	У	z	$B(\mathbf{A}^{2})$
N(101)	8589 (3)	730 (35)	6526 (5)	4,3
C(102)	8767 (4)	2353 (10)	7161 (7)	5,1
C(103)	8057 (4)	3194 (10)	7385 (7)	5,3
C(104)	7338 (3)	2060 (10)	6874 (7)	4,8
C(105)	6462 (5)	2242 (13)	6867 (9)	6,8
C(106)	5935 (4)	902 (17)	6322 (9)	8,2
C(107)	6276 (4)	-669 (14)	5788 (9)	7,4
C(108)	7178 (4)	-874 (11)	5778 (7)	5,6
C(109)	7688 (3)	527 (10)	6342 (6)	4,2
C(110)	7998 (6)	4966 (11)	8035 (10)	8,2
C(111)	9193 (4)	-467 (10)	6029 (7)	5,0
C(112)	10123 (4)	-65 (13)	6609 (11)	6,6
O(113)	8952 (3)	-1736 (8)	5235 (6)	6,8
H(102)	9236 (38)	2832 (91)	7325 (80)	6,2
H(105)	6249 (46)	3736 (107)	6867 (96)	6,6
H(106)	5454 (48)	1147 (118)	6498 (96)	7,6
H(107)	5932 (46)	-1760 (106)	5461 (95)	5,4
H(108)	7409 (41)	-2295 (96)	5629 (89)	7,3
H(110A)	7706 (48)	5323 (116)	7296 (105)	4,7
H(110 <i>B</i>)*	7739 (0)	5036 (0)	9368 (0)	8,0
H(110C)*	8624 (0)	5579 (0)	8160 (0)	8,0
H(112A)	10255 (52)	835 (128)	5970 (110)	6,4
H(112 <i>B</i>)	10295 (52)	-1000 (126)	6187 (116)	6,6
H(112C)*	10176 (0)	76 (0)	8116 (0)	0,0
C(201)	2988 (4)	7340 (10)	7966 (6)	4,3
C(202)	2132 (3)	6911 (9) 5216 (10)	8097(6)	4,2
C(203)	1975 (3)	5316 (10)	8085 (0)	4,2
C(204)	2616 (3)	4135 (10)	9185 (6)	4,4
C(205)	3450 (3)	4034 (10)	9019(0)	4,4
C(206)	3038 (3)	6224(10)	8414 (7) 7242 (6)	4,0
N(201)	3163 (4)	9030(10)	7342 (0)	0,1 Q /
O(201)	3900 (3)	9347(10)	7090 (7)	0,4 8 0
O(202)	2309 (4)	4801 (0)	7134 (7) 9930 (6)	5.0
N(203)	1004 (3)	4001 (9) 5784 (10)	8730 (0)	7.6
O(203)	492 (3)	3/33 (0)	9513 (6)	7,0
N(204)	4168(4)	3436 (10)	9511 (6)	63
$\Omega(205)$	3000 (3)	2160 (9)	10294 (7)	84
O(205)	4867 (5)	3793 (11)	9084 (7)	9.4
H(202)	1752 (36)	7659 (84)	8067 (75)	0,1
H(204)	2484 (37)	2741 (87)	9592 (79)	4.1
H(206)	4202 (39)	6667 (87)	8257 (77)	3,7

Discussion

Les Figs. 1 et 2 indiquent la numérotation des atomes et regroupent les valeurs numériques caractérisant la géométrie moléculaire. Les longueurs des liaisons et les angles de valence sont comparables à ceux observés pour des molécules de ce type (Hanson, 1964, 1965; Brown, Wallwork & Wilson, 1964; Iwasaki & Saito, 1970; Pascard & Pascard-Billy, 1972).

La molécule d'acétyl-1 scatole est représentée sur la Fig. 3(a). Elle peut être comparée à celle observée lors

Fig. 2. Molécule de TNB. (a) Longueurs de liaisons (Å), $\sigma \simeq 0,005$ Å, (b) angles de valence (°), $\sigma \simeq 0,4^{\circ}$,

de l'étude précédente (Surcouf, Mornon & Malgrange, 1978). Elle adopte la configuration Z, prévue pour ces composés (Sauvaitre, Teysseyre & Elguero, 1976). On retrouve le contact intramoléculaire court: $C(108)-H(108)\cdots O(113)$ avec 2,48° Å pour $H(108)\cdots O(113)$. La partie scatole de la molécule est plane; l'équation du plan moyen est 0,0445x + 0,3156y - 0,9479z + 3,6528 = 0. Le groupement COCH₃ est incliné de 10,6° par rapport à ce plan. Cette inclinaison, plus importante que dans la structure de l'acétyl-1 scatole seul (4,7°), peut résulter de la présence du TNB; le contact $O(113)(x,y,z)\cdots N(203)$ - $(1 - x, y - \frac{1}{2}, 1 - z)$ est court: 3,16° Å.

Une vue de la molécule de TNB est présentée sur la Fig. 3(b). Le noyau benzénique est plan (0,0190x - 0,3252y - 0,9455z + 7,1920 = 0), les groupements

(b)

Fig. 3. Vues des molécules obtenues par le programme ORTEP. Ellipsoïdes à 50% de probabilité. (a) Acétyl-1 scatole, (b) TNB.

Tableau 2. Contacts intermoléculaires inférieurs à 3,5 Å à l'intérieur du sandwich TNB-acétyl-1 scatole-TNB'

La distance signalée par un astérisque est la plus courte.

Acétyl-1 scatole	E TNB	
(x,y,z)	$(1-x, y-\frac{1}{2}, 1-z)$	Distances (Å)
C(104)	C(201)	3,457
C(104)	N(201)	3,42,
C(105)	O(201)	3,294
C(107)	C(206)	3,38,
C(108)	C(205)	3,492
C(109)	C(201)	3,46,
C(109)	C(202)	3,41
C(111)	N(203)	3,46
C(111)	O(203)	3,30,
O(113)	C(203)	3,42,
O(113)	N(203)	3,16,*
O(113)	O(203)	3,38,
O(113)	O(204)	3,43
Acétyl-1 scatole	e TNB'	
(x,y,z)	$(1 - x, y - \frac{1}{2}, 2 - z)$	Distances (Å)
N(101)	N(203)	3,394
N(101)	O(204)	3,38
C(103)	C(202)	3,44,
C(107)	O(205)	3,36,
C(109)	C(204)	3,47
C(111)	O(204)	3,344

o

sinß

Fig. 4. Projections de la structure (a) selon l'axe a, (b) selon l'axe b, (c) selon l'axe c.

 NO_2 sont inclinés par rapport au plan du cycle: 6,6, 6,3, -11,4° respectivement pour N(201)O₂, N(203)O₂, N(205)O₂.

Des rotations de cette amplitude sont observées dans les complexes cités au début de cet article.

L'agitation thermique des groupements NO_2 est plus importante que celle des atomes de carbone du noyau benzénique (Tableau 1 et Fig. 3*b*).

La Fig. 4 montre l'organisation cristalline. Les molécules forment des empilements infinis le long de l'axe c. A l'intérieur de chaque colonne, les molécules sont alternées et presque parallèles, l'angle entre les plans moyens étant de $1,6^{\circ}$.

Fig. 5. Projection de deux molécules équivalentes de TNB sur la molécule d'acétyl-1 scatole intermédiaire.

Une molécule d'acétyl-1 scatole est en sandwich entre deux molécules de TNB.

La Fig. 5 représente une projection des trois molécules sur le plan moyen de l'acétyl-1 scatole.

Les distances inférieures à 3,5 Å à l'intérieur du sandwich TNB-acétyl-1 scatole-TNB' sont indiquées dans le Tableau 2. La distance $O(113) \cdots N(203)$ (signalée par un astérisque) est la plus courte: $3,16_0$ Å.

La cohésion cristalline est assurée par des contacts de van der Waals dont un de type $C-H\cdots O$ est particulièrement court: $C(111)-O(113)(x,y,z)\cdots$ $H(112A)-C(112)(2-x, y-\frac{1}{2}, 1-z)$ avec $O(113)\cdots$ $H(112A) 2,50_2$ Å, $C(111)-O(113)\cdots H(112A)$ 133°, et $O(113)\cdots H(112A)-C(112)$ 163°.

Les auteurs remercient M J. Elguero de leur avoir proposé l'étude de ce complexe et Mme R. M. Claramunt-Elguero d'avoir préparé le produit.

Références

- BROWN, D. S., WALLWORK, S. C. & WILSON, A. (1964). Acta Cryst. 17, 168–176.
- HANSON, A. W. (1964). Acta Cryst. 17, 559-568.
- HANSON, A. W. (1965). Acta Cryst. 19, 19-26.
- IWASAKI, F. & SAITO, Y. (1970). Acta Cryst. B26, 251-259.
- PASCARD, R. & PASCARD-BILLY, C. (1972). Acta Cryst. B28, 1926–1935.
- SAUVAITRE, H., TEYSSEYRE, J. & ELGUERO, J. (1976). Bull. Soc. Chim. Fr. pp. 635–641.
- SURCOUF, E., MORNON, J.-P. & MALGRANGE, C. (1978). Acta Cryst. B34, 2169–2172.

Acta Cryst. (1978). B34, 2176–2180

X-ray Crystallographic and Nuclear Magnetic Resonance Spectroscopic Study of *p*-Chlorophenylethylamine Hydrochloride

By I. L. MARTIN AND G. B. BAKER

MRC Neuropharmacology Unit, University of Birmingham Medical School, Birmingham B15 2TJ, England

AND T. A. HAMOR, W. B. JENNINGS AND K. PAXTON

Department of Chemistry, The University, Birmingham B15 2TT, England

(Received 20 December 1977; accepted 21 January 1978)

 $(C_8H_{11}CIN)^+CI^-$ has been examined in the solid state by X-ray crystallography and in solution by NMR spectroscopy. The crystals are monoclinic space group $P2_1/c$ with a = 19.89 (2), b = 5.80 (1), c = 8.87 (1) Å, $\beta = 115.6$ (1)°, Z = 4. The structure was refined by least squares to R = 7.9% for 821 counter amplitudes. The ethylamine side chain is in the extended conformation, the $C-C-C-N^+$ torsion angle being 169°. The best plane through these atoms is inclined at 69° to the plane of the phenyl ring. In solution there is an equilibrium between the *trans* and *gauche* conformations of the ethylamine chain with a slight energetic preference for the former (of *ca* 1.8 kJ mol⁻¹ at 35°C).